Computer Graphics

Jeng-Sheng Yeh 葉正聖 Ming Chuan University (modified from Bing-Yu Chen's slides)

Introduction

- □ Instructor: Jeng-Sheng Yeh(葉正聖)
- E-mail: jsyeh@ntu.edu.tw
 - The easiest way to contact with me
- D Mobile: 0918-055862
- □ Web:
 - http://jsyeh.org/3dcg10/
 - all the materials/info. are announced ASAP

Textbook 1

J. D. Foley,
 A. van Dam,
 S. K. Feiner,
 J. F. Hughes,
 R. L. Phillips.
 Introduction to Computer Graphics,
 Addison-Wesley, 1993.

FOLEY • VAN DAM • FEINER • HUGHES • PHILLIPS

Textbook 2

E. Angel.
 Interactive
 Computer Graphics:
 A Top-Down Approach
 Using OpenGL, 3rd ed.,
 Addison-Wesley, 2002.

INTERACTIVE Computer graphics

A Top-Down Approach Using OpenGL[™]

Third Edition

EDWARD ANGEL

J. D. Foley,
 A. van Dam,
 S. K. Feiner,
 J. F. Hughes.
 Computer Graphics: Principles and Practice in C, 2nd ed.,
 Addison-Wesley, 1995.

THE SYSTEMS PROGRAMMING SERIES

A. Watt.
 3D Computer Graphics 3rd ed.,
 Addison-Wesley, 1999.

 A. Watt,
 M. Watt.
 Advanced Animation and
 Rendering Techniques: Theory and Practice,
 Addison-Wesley, 1992.

ALAN WATT MARK WATT

□ M. Woo, J. Neider, T. Davis, D. Shreiner. **OpenGL®** Programming Guide: The Official Guide to Learning OpenGL, ver. 1.2, 3rd. ed., Addison-Wesley, 1999

Pre-requirements (better-to-have)

- Linear Algebra
- Data Structures
- Algorithms
- Programming Skills
 - C/C++

Requirements

- Participants
- 3 Programming Homework
 - Deadlines = 5/11,5/18,5/25
- Examination

What is Computer Graphics ?

Definition

the pictorial synthesis of real or imaginary objects from their computer-based models

		OUTPUT	
		descriptions	images
LT.	descriptions		Computer Graphics
	images	Computer Vision Pattern Recognition	Image Processing

What is Computer Graphics ?

- Computer Graphics deals with all aspects of creating images with a computer
 - hardware
 - software
 - applications

Example

Where did this image come from?

What hardware/software did we need to produce it?

Preliminary Answer

Application

The object is an artist's rendition of the sun for an animation to be shown in a domed environment (planetarium)

Software

Maya for modeling and rendering but Maya is built on top of OpenGL

Hardware

PC with graphics cards for modeling and rendering The Advantages of Interactive Graphics

- one of the most natural means of communicating with a computer
- a picture is worth then thousand words
- a moving picture is worth than thousand static ones
 - movie, motion dynamics
- Graphical User Interface

Basic Graphics System

Elements of Image Formation

- Objects
- ViewerLight source(s)

- Attributes that govern how light interacts with the materials in the scene
- Note the independence of the objects, viewer, and light source(s)

Light

Light is the part of the

electromagnetic spectrum that causes a reaction in our visual systems

- Generally these are wavelengths in the range of about 350-750 nm (nanometers)
- Long wavelengths appear as reds and short wavelengths as blues

Ray Tracing and Geometric Optics

One way to form an image is to follow rays of light from a point source determine which rays enter the lens of the camera. However, each ray of light may have multiple interactions with objects before being absorbed or going to infinity.

Luminance and Color Images

Luminance

- Monochromatic
- Values are gray levels
- Analogous to working with black and white film or television
- Color
 - Has perceptional attributes of hue, saturation, and lightness
 - Do we have to match every frequency in visible spectrum? No!

Three-Color Theory

- Human visual system has two types of sensors
 - Rods: monochromatic, night vision
 - Cones
 - Color sensitive
 - Three types of cone
 - Only three values (the *tristimulus* values) are sent to the brain

- Need only match these three values
 - Need only three *primary* colors

Additive and Subtractive Color

Additive color

- Form a color by adding amounts of three primaries
 - CRTs, projection systems, positive film
- Primaries are Red (R), Green (G), Blue (B)
- Subtractive color
 - Form a color by filtering white light with Cyan (C), Magenta (M), and Yellow (Y) filters
 - Light-material interactions
 - Printing
 - Negative film

The RGB Color Model - for CRT

The CMY Color Model – for hardcopy

 $K = \min(C, M, Y)$ C = C - KM = M - KY = Y - K

The YIQ Color Model – for color-TV

- □ Y : luminance
- □ I and Q : chromaticity

$$\begin{bmatrix} Y \\ I \\ Q \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ 0.596 & -0.275 & -0.321 \\ 0.212 & -0.528 & 0.311 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

The HSV Color Model - for user-oriented

Pinhole Camera

Use trigonometry to find projection of a point

$$x_p = -x/z/d$$
 $y_p = -y/z/d$ $z_p = d$

These are equations of simple perspective

Synthetic Camera Model

Advantages

- Separation of objects, viewer, light sources
- Two-dimensional graphics is a special case of three-dimensional graphics
- Leads to simple software API
 - Specify objects, lights, camera, attributes
 - Let implementation determine image
- Leads to fast hardware implementation

Global vs. Local Lighting

- Cannot compute color or shade of each object independently
 - Some objects are blocked from light
 - Light can reflect from object to object
 - Some objects might be translucent

Why not ray tracing?

- Ray tracing seems more physically based so why don't we use it to design a graphics system?
- Possible and is actually simple for simple objects such as polygons and quadrics with simple point sources
- In principle, can produce global lighting effects such as shadows and multiple reflections but is slow and not well-suited for interactive applications

History of Computer Graphics

Computer Graphics: 1950-1960

- Computer graphics goes back to the earliest days of computing
 - Strip charts
 - Pen plotters
 - Simple displays using A/D converters to go from computer to calligraphic CRT
- Cost of refresh for CRT too high
 - Computers slow, expensive, unreliable

Computer Graphics: 1960-1970

Wireframe graphics
Project Sketchpad
Display Processors
Storage tube

Project Sketchpad

Ivan Sutherland's PhD thesis at MIT

- Recognized the potential of manmachine interaction
- Loop
 - Display something
 - User moves light pen
 - Computer generates new display
- Sutherland also created many of the now common algorithms for computer graphics

Display Processor

Rather than have host computer try to refresh display use a special purpose computer called a *display processor* (DPU)

- Graphics stored in display list (display file) on display processor
- Host compiles display list and sends to DPU

Direct View Storage Tube

Created by Tektronix

- Did not require constant refresh
- Standard interface to computers
 - Allowed for standard software
 - Plot3D in Fortran
- Relatively inexpensive
 - Opened door to use of computer graphics for CAD community

Computer Graphics: 1970-1980

- Raster Graphics
- Beginning of graphics standards
 - IFIPS
 - □ GKS: European effort
 - Becomes ISO 2D standard
 - Core: North American effort
 - 3D but fails to become ISO standard
- Workstations and PCs

Raster Graphics

Image produced as an array (the raster) of picture elements (pixels) in the frame buffer

Raster Graphics

Allow us to go from lines and wireframes to filled polygons

PCs and Workstations

- Although we no longer make the distinction between workstations and PCs historically they evolved from different roots
 - Early workstations characterized by
 - Networked connection: client-server
 - High-level of interactivity
 - Early PCs included frame buffer as part of user memory

Computer Graphics: 1980-1990

Realism comes to computer graphics

Computer Graphics: 1980-1990

Special purpose hardware

- Silicon Graphics geometry engine
 - VLSI implementation of graphics pipline
- Industry-based standards
 - PHIGS
 - RenderMan
- Networked graphics: X Window System
- Human-Computer Interface (HCI)

Computer Graphics: 1990-2000

OpenGL API

- Completely computer-generated feature-length movies (Toy Story) are successful
- New hardware capabilities
 - Texture mapping
 - Blending
 - Accumulation, stencil buffer

Computer Graphics: 2000-

- Photorealism
- Graphics cards for PCs dominate market
 - Nvidia, ATI, 3DLabs
- Game boxes and game players determine direction of market
- Computer graphics routine in movie industry: Maya, Lightwave