Computer Graphics

Jeng-Sheng Yeh 葉正聖 Ming Chuan University (modified from Bing-Yu Chen's slides)

Viewing in 3D

- □ 3D Viewing Process
- □ Specification of an Arbitrary 3D View
- □ Orthographic Parallel Projection
- **□ Perspective Projection**
- □ 3D Clipping for Canonical View Volume

3D Viewing Process

Classical Viewing

- □ Viewing requires three basic elements
	- **One or more objects**
	- **A** viewer with a projection surface
	- Projectors that go from the object(s) to the projection surface
- \Box Classical views are based on the relationship among these elements
	- **The viewer picks up the object and orients it** how she would like to see it
- \Box Each object is assumed to constructed from flat *principal faces*
	- Buildings, polyhedra, manufactured objects

Planar Geometric Projections

- **□** Standard projections project onto a plane
- \square Projectors are lines that either
	- **n** converge at a center of projection are parallel
- **□** Such projections preserve lines
	- **n** but not necessarily angles
- Nonplanar projections are needed for applications such as map construction

Classical Projections

Perspective vs. Parallel

- \Box Computer graphics treats all projections the same and implements them with a single pipeline
- □ Classical viewing developed different techniques for drawing each type of projection
- **□** Fundamental distinction is between parallel and perspective viewing even though mathematically parallel viewing is the limit of perspective viewing

Taxonomy of Planar Geometric Projections

Perspective Projection

Parallel Projection

Orthographic Projection

Projectors are orthogonal to projection surface

Multiview Orthographic Projection

 \Box Projection plane parallel to principal face **□** Usually form front, top, side views

isometric (not multiview orthographic view) with the settle of th

in CAD and architecture, we often display three multiviews plus isometric

top

Advantages and Disadvantages

\square Preserves both distances and angles

- **Shapes preserved**
- Can be used for measurements
	- **□** Building plans
	- **□** Manuals
- □ Cannot see what object really looks like because many surfaces hidden from view
	- **Often we add the isometric**

Axonometric Projections

Allow projection plane to move relative to o bject

classify by how many angles of a corner of a projected cube are the same

none: trimetric two: dimetric three: isometric

Types of Axonometric Projections

Advantages and Disadvantages

- Lines are scaled (*foreshortened*) but can find scaling factors
- □ Lines preserved but angles are not
	- \mathbb{R}^3 Projection of a circle in a plane not parallel to the projection plane is an ellipse
- \Box Can see three principal faces of a box-like object
- **□** Some optical illusions possible
	- **Parallel lines appear to diverge**
- □ Does not look real because far objects are scaled the same as near objects
- **□** Used in CAD applications

Oblique Projection

Arbitrary relationship between projectors and projection plane

Advantages and Disadvantages

- \Box Can pick the angles to emphasize a particular face
	- **Architecture: plan oblique, elevation oblique**
- **□** Angles in faces parallel to projection plane are preserved while we can still see "around " side

□ In physical world, cannot create with simple camera; possible with bellows camera or special lens (architectural)

Specification of an Arbitrary 3D View

- VRP: view reference point
- □ VPN: view-plane normal
- VUP: view-up vector

VRC:the viewing-reference coordinate system

 \Box CW: center of the window

Infinite Parallelepiped View Volume

□ DOP: direction of projection **O** PRP: projection reference point

Truncated View Volume for an Orthographic Parallel Projection

The Mathematics ofOrthographic Parallel Projection

The Steps of Implementation of Orthographic Parallel Projection

- \Box Translate the VRP to the origin
- \Box Rotate VRC such that the VPN becomes the z axis
- □ Shear such that the DOP becomes parallel to the z axis
- \Box Translate and scale into the parallel-projection canonical view volume

$$
N_{\text{par}} = S_{\text{par}} \bullet T_{\text{par}} \bullet SH_{\text{par}} \bullet R \bullet T(-VRP)
$$

Synthetic Camera Model

Perspective Projection

Projectors coverge at center of projection

Truncated View Volume for an Perspective Projection

Perspective Projection (Pinhole Camera)

Perspective Division

However *W* ≠ 1, so we must divide by *W* to return from homogeneous coordinates

$$
(x_p, y_p, z_p) = \left(\frac{X}{W}, \frac{Y}{W}, \frac{Z}{W}\right) = \left(\frac{x}{z/d}, \frac{y}{z/d}, d\right)
$$

The Steps of Implementation of Perspective Projection

- \Box Translate the VRP to the origin
- **□** Rotate VRC such that the VPN becomes the z axis
- \Box Translate such that the PRP is at the origin
- □ Shear such that the DOP becomes parallel to the z axis
- \Box Scale such that the view volume becomes the canonical perspective view volume

$$
N_{per} = S_{per} \bullet SH_{per} \bullet T(-PRP) \bullet R \bullet T(-VRP)
$$

Alternative Perspective Projection

Vanishing Points

- \Box Parallel lines (not parallel to the projection plan) on the object converge at a single point in the projection (the *vanishing point*)
- \Box Drawing simple perspectives by hand uses these vanishing point(s)

vanishing point

Three-Point Perspective

□ No principal face parallel to projection plane \Box Three vanishing points for cube

Two-Point Perspective

 \Box On principal direction parallel to projection plane \Box Two vanishing points for cube

One-Point Perspective

- \Box One principal face parallel to projection plane
- \Box One vanishing point for cube

Advantages and Disadvantages

- □ Objects further from viewer are projected smaller than the same sized objects closer to the viewer (diminuition)
	- **Looks realistic**
- □ Equal distances along a line are not projected into equal distances (*nonuniform foreshortening*)
- □ Angles preserved only in planes parallel to the projection plane
- \Box More difficult to construct by hand than parallel projections (but not more difficult
by computer)

Canonical View Volume forOrthographic Parallel Projection

$$
\begin{array}{l} \Box x = -1, y = -1, z = 0 \\ \Box x = 1, y = 1, z = -1 \end{array}
$$

The Extension ofthe Cohen-Sutherland Algorithm

 \Box bit 1 $-$ – point is above view volume $\qquad \quad \, \mathsf{y} > 1$ \Box bit 2 – point is below view volume y < -1 \Box bit 3 $-$ – point is right of view volume $\qquad \, \times \,$ $>$ 1 \Box bit 4 $-$ – point is left of view volume $\quad\quad$ x < -1 \Box bit 5 $-$ – point is behind view volume $\qquad \,$ z < -1 \Box bit 6 – – point is in front of view volume $\,$ z >0

Intersection of a 3D Line

 \square a line from $P_0(x_0, y_0, z_0)$ to $P_1(x_1, y_1, z_1)$ can be represented as $x = x_0 + t(x_1 - x_0)$ $z = z_0 + t(z_1 - z_0)$ 0 $\le t \le 1$ $y = y_0 + t(y_1 - y_0)$

 \Box so when $y = 1$ $1 \quad \nu_0$ $0^{11/6}1 \t 0$ $\rm 0$ $y_1 - y_0$ $0^{1/\nu_1}$ v_0 0 $(1 - y_0)(z_1 - z_0)$ $x = x_0 + \frac{(1 - y_0)(x_1 - x_0)}{x_0}$ *y y* y_0)($z_1 - z$ *z z* − $= z_{0} + \frac{(1 - y_{0})(\lambda_{1})}{2}$ $= x_0 + \frac{(1 - y_0)(\lambda_1 - \lambda_2)}{(\lambda_1 - \lambda_2)}$

Canonical View Volume forPerspective Projection

$$
\Box
$$
 x = -z, y = -z, z = -1

The Extension ofthe Cohen-Sutherland Algorithm

Intersection of a 3D Line

 \Box so when $y = z$

Clipping in Homogeneous Coordinates

■ Why clip in

homogeneous coordinates ?

 \blacksquare it is possible to transform the *perspective-projection canonical view volume* into the *parallel-projection canonical view volume*

$$
M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{1 + z_{\min}} & \frac{-z_{\min}}{1 + z_{\min}} \\ 0 & 0 & -1 & 0 \end{bmatrix}, z_{\min} \neq -1
$$

Clipping in Homogeneous Coordinates

- \Box The corresponding plane equations are
	- \blacksquare \times = -W
	- \blacksquare \times $=$ W
	- \blacksquare \blacktriangleright \blacktriangleright \blacktriangleright \blacksquare
	- \blacksquare Y = W
	- \blacksquare \blacks
	- \blacksquare Z = 0