Computer Graphics

Jeng-Sheng Yeh 2 ¢
Ming Chuan University
(modified from Bing-Yu Chen’s slides)

Visible-Surface Determination

Back-Face Culling

The Depth-Sort Algorithm
Binary Space-Partitioning Trees
The z-Buffer Algorithm
Scan-Line Algorithm
Visible-Surface Ray Tracing
Warnock’s Algorithm

Back-Face Culling = Front Facing

» X

Back-Face Culling = Front Facing

use cross-product to get the normal
of the face (nhot the actual normal)

use inner-product to check the facing

N = (Vz _Vl)x (V; —vy)

List-Priority Algorithms

The Painter’'s Algorithm
The Depth-Sort Algorithm
Binary Space-Partitioning Trees

The Painter’s Algorithm

for the planes with constant z
not for real 3D, just for 2%2D

sort all polygons according to the smallest
(farthest) z coordinate of each

scan convert each polygon in ascending
order of smallest z coordinate (i.e., back to
front)

The Depth-Sort Algorithm

sort all polygons according to the smallest
(farthest) z coordinate of each

resolve any ambiguities that sorting may
cause when the polygons’ z extents
overlap, splitting polygons if necessary

scan convert each polygon in ascending
order of smallest z coordinate (i.e., back to
front)

Overlap Cases

\4
Z

> X

Y

=

» X

> X

Overlap Detection

Do the polygons’x not overlap?
Do the polygons’y not overlap?

Is P entirely on the opposite side of
Q’s plane from the viewpoint?

Is Q entirely on the same side of P’s
plane as the viewpoint?

Do the projections of the polygons
onto the (Xx,y) plane not overlap?

Binary Space-Partitioning Trees

P1 P1

A P2 frchk

P2 P2
back
= front front back
D| B
7

e D C A B
3,1,2 3,2,1 1,2,3 2,1,3

extremely efficient for static objects

The z-Buffer Algorithm

void zBuffer() {
int pz;
for (each polygon) {
for (each pixel in polygon’s projection) {
pz=polygon’s z-value at (X,y);
If (pz==ReadZ(x,y)) {
WriteZ(Xx,Y,pz);
WritePixel(X,y,color);

The z-Buffer Algorithm

9|9(5|5|5[5|5]|0

5|95(5|5|5(5(|0]|0
9|9(5|5|5(0|0]|0

°2(95|5|5|0|0(0}|0
°2(95|5|0|0|0|0|0

°2|(92|/0|0|0(0|0|O
9(0|0|{0|0|0|0|0O

0/0/|0/0]|0|0|0]0

5|9(5|5|5[5|5]0

9|9(5|5|5(5|0]|0
9|9(5|5|5(0(0]|0

°2(5|5(5|0(0|0|0

6[(5|5(3|0(0|0|0
7|6|5(4|3(0(0]|0

8|7|6|5|4|3|0|0
0/0/0|0|0|0|0]|O

)
)

95(9(5|9|9(5]|5
5(5(5|5|5|5
95|9(5|5|%

S
5
5

3
4

3
4
5

6|5(4|3

7|6(5|4]|3

8|7|6|5|4]3

0/0/{0|0|0|0|0|0
0/0({0|0|0(0|0|0
0/0|{0|0|0|0|0O|O

0/0|/0O|O|O(O(O|O| + [S[D[D]5

0/0({0|0|0|0|0|0
0/0({0|0|0({0|0]|0
0/0({0|0|0|0|0]|0O
0/0/0|0|0|0|0]0

5/5|5|5(5(5(5|0
5(5(5]|5|5(5|0]|0
5|5|5|5(5(0(0|0
5|5|5|5(0(0(0|0
5/5(5|/0|0({0|0|0
5|5|0|0|0(0|0|0
5/0(0|0|{0({0|0|0
0/{0|{0|0|0[{0|0|0

The z-Buffer Algorithm

Yy

A y1_y
Vo = Zq L, = Zl_(zl_zz) :
/\ 1= Y2

Z Z, Z i y — y

Y. a - b Scan line == _(21 = 23) 1 s
Yot z, yl y3
X, — X
_ b p

Zp = £ (Zb — Za)

Y3 Z, Xp — Xy

Scan-Line Algorithm

Scan-Line Algorithm

ET entry | x Ax|ID| @&+——

ymax

AET contents

Scan line
o
B
r.r+1

PT entry | ID | Plane eq. | Shading info | In-out

Yy +2

ET = edge table
PT = polygon table
AET = active-edge table

AB
AB
AB
AB

Entries

AC
AC
DE
CB

FD FE
CB FE
DE FE

General Scan-Line Algorithm

add surfaces to surface table (ST);
initialize active-surface table (AST);

for (each scan line) {
update AST,;

for (each pixel on scan line) {
determine surfaces in AST that project to pixel;
find closest such surface;
determine closest surface’s shade at pixel;

+
+

Ray Tracing = Ray Casting

select center of projection and window on viewplane;
for (each scan line in image) {
for (each pixel in scan line) {
determine ray from center of projection through pixel,
for (each object in scene) {
If (object is intersected and is closest considered thus far)
record intersection and object name;

}

set pixel’s color to that at closest object intersection;

Ray Casting

./

Center of
projection —

———1 Window

Spatial Partitioning

QO

Spatial Partitioning

4

Spatial Partitioning

Warnock’s Algorithm

a area-subdivision algorithm

1 2 1 1

}/ 2\ 2 1
2 / r__4 33 2
I 4\ [3
2 4 3
| 3
/ I 4 Y
/ 4] a[4TNT3 3
2 Stalaralalalala 3 4
2 113]3]3[3[3]3[3[3[3 2
1 2 2 2

Warnock’s Algorithm

1. all the polygons are disjoint from the area

2. there is only one intersecting or only one
contained polygon

3. there is a single surrounding polygon, but
no intersecting or contained polygons

4. more than one polygon is intersecting,
contained in, or surrounding the area, but
one Is a surrounding polygon that is In
front of all the other polygons

Warnock’s Algorithm

EEER

surrounding intersecting contained disjoint

Warnock’s Algorithm

T T » X
: W
w Q ' Contained
: : olygon
: VIV polyg
W
¢
. lntersecting
(@)

S polygon

M Surrounding
X X

' , polygon

» X

Q
* Intersecting

! polygon

Surrounding
polygon

Performance of Four Algorithms
for Visible-Surface Determination

Algorithm

Number of Polygons

100|2,500| 60,000
Depth sort 1 10 507
z-buffer 54 54 54
Scan line 5 21 100
Warnock area subdivision| 11 64 307

	cg03visur.pdf
	Computer Graphics
	Visible-Surface Determination
	Back-Face Culling = Front Facing
	Back-Face Culling = Front Facing
	List-Priority Algorithms
	The Painter’s Algorithm
	The Depth-Sort Algorithm
	Overlap Cases
	Overlap Detection
	Binary Space-Partitioning Trees
	The z-Buffer Algorithm
	The z-Buffer Algorithm
	The z-Buffer Algorithm
	Scan-Line Algorithm
	Scan-Line Algorithm
	General Scan-Line Algorithm
	Ray Tracing = Ray Casting
	Ray Casting
	Spatial Partitioning
	Spatial Partitioning
	Spatial Partitioning
	Warnock’s Algorithm
	Warnock’s Algorithm
	Warnock’s Algorithm
	Warnock’s Algorithm
	Performance of Four Algorithmsfor Visible-Surface Determination

