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Visible-Surface Determination

Back-Face Culling

The Depth-Sort Algorithm
Binary Space-Partitioning Trees
The z-Buffer Algorithm
Scan-Line Algorithm
Visible-Surface Ray Tracing
Warnock’s Algorithm




Back-Face Culling = Front Facing
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Back-Face Culling = Front Facing

use cross-product to get the normal
of the face (nhot the actual normal)

use inner-product to check the facing

N = (Vz _Vl)x (V; —vy)




List-Priority Algorithms

The Painter’'s Algorithm
The Depth-Sort Algorithm
Binary Space-Partitioning Trees




The Painter’s Algorithm

for the planes with constant z
not for real 3D, just for 2%2D

sort all polygons according to the smallest
(farthest) z coordinate of each

scan convert each polygon in ascending
order of smallest z coordinate (i.e., back to
front)




The Depth-Sort Algorithm

sort all polygons according to the smallest
(farthest) z coordinate of each

resolve any ambiguities that sorting may
cause when the polygons’ z extents
overlap, splitting polygons if necessary

scan convert each polygon in ascending
order of smallest z coordinate (i.e., back to
front)




Overlap Cases
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Overlap Detection

Do the polygons’x not overlap?
Do the polygons’y not overlap?

Is P entirely on the opposite side of
Q’s plane from the viewpoint?

Is Q entirely on the same side of P’s
plane as the viewpoint?

Do the projections of the polygons
onto the (Xx,y) plane not overlap?




Binary Space-Partitioning Trees
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extremely efficient for static objects




The z-Buffer Algorithm

void zBuffer() {
int pz;
for (each polygon) {
for (each pixel in polygon’s projection) {
pz=polygon’s z-value at (X,y);
If (pz==ReadZ(x,y)) {
WriteZ(Xx,Y,pz);
WritePixel(X,y,color);




The z-Buffer Algorithm
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The z-Buffer Algorithm
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Scan-Line Algorithm




Scan-Line Algorithm
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General Scan-Line Algorithm

add surfaces to surface table (ST);
initialize active-surface table (AST);

for (each scan line) {
update AST,;

for (each pixel on scan line) {
determine surfaces in AST that project to pixel;
find closest such surface;
determine closest surface’s shade at pixel;

+
+




Ray Tracing = Ray Casting

select center of projection and window on viewplane;
for (each scan line in image) {
for (each pixel in scan line) {
determine ray from center of projection through pixel,
for (each object in scene) {
If (object is intersected and is closest considered thus far)
record intersection and object name;

}

set pixel’s color to that at closest object intersection;




Ray Casting
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Spatial Partitioning
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Spatial Partitioning
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Spatial Partitioning




Warnock’s Algorithm

a area-subdivision algorithm
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Warnock’s Algorithm

1. all the polygons are disjoint from the area

2. there is only one intersecting or only one
contained polygon

3. there is a single surrounding polygon, but
no intersecting or contained polygons

4. more than one polygon is intersecting,
contained in, or surrounding the area, but
one Is a surrounding polygon that is In
front of all the other polygons




Warnock’s Algorithm

EEER

surrounding intersecting contained disjoint




Warnock’s Algorithm
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Performance of Four Algorithms
for Visible-Surface Determination

Algorithm

Number of Polygons

100|2,500| 60,000
Depth sort 1 10 507
z-buffer 54 54 54
Scan line 5 21 100
Warnock area subdivision| 11 64 307
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